
fter years of teaching courses on
seismic techniques, from introductory
to advanced, I have observed two
things: (1) we learn best when we can
visualize a concept, and (2) we learn
by doing, not by observing what oth-
ers do (Mike Graul taught me this).

I have let these two principles
guide my development of this tutorial
on imaging, which I have used many
times in a course titled “Advances in
seismic processing.” In this exercise I
use a simple dipping reflector to devel-
op the concepts of NMO, prestack time
migration, DMO, and poststack migra-
tion, and show how they are closely
interrelated. The specific geometry was
suggested to me years ago by Joong
Chun and, although I never saw his
development of the full exercise, I'm
sure it would have gone something
like this. By the time you get to the last
figure, you will all say: “But that is so
obvious!” What you won't appreciate
is the blood, sweat, and tears I have put
in to make it so obvious!

Now, let me give you a few guide-
lines for following this tutorial. First of
all, don't just read it, but do it (guide-
line 2 above). All you need is squared
graph paper, a pencil, a ruler, and a
calculator. Second, if all of this is new
to you, you may want to refer to other
publications, such as Dave Hale’s
excellent Dip Movement Processing
(SEG Course Notes Series, Volume 4).
I have not developed the theory of
imaging in this paper.

So, get out a clean notepad and
let’s start.

The basic geometry. In this exercise
we are going to assume a single dip-
ping bed within a constant velocity
earth. Since the velocity (V) is con-
stant, depth (d) and two-way seismic
time (t) are simply scaled versions of
each other, as expressed by the simple
equation:

d = Vt/2, (1)

You can thus use the squares on
your graph paper as the basic unit of
time or depth, and their size is arbi-
trary. To make life really simple, we
will do all of our measurements based
on a unit square. 

To start, turn the graph paper
horizontally, and put a dot for the

origin which is 5 squares down and
5 squares over to the right from the
top left corner. Label this point O for
origin, and note that it defines 0 for
our initial work. Next, extend the
surface horizontally along a straight
line. Then, add a dipping reflector by
connecting points that go to the right
by 2 squares and vertically down by
1 square. This creates an angle of 
tan-1(1⁄2) = 26.6˚ with respect to the
horizontal (a strange angle but one
that works well for this problem).
Next, put a source (labeled S) 10
units to the right of the origin, and a

receiver (labeled R) 20 units to the
right of the source. This means that
the offset, X, which is the distance
between S and R, is 20 units. Finally,
label the midpoint (halfway between
S and R) M. Your initial geometry
should look like Figure 1. You can
use this initial geometry as a tem-
plate for the rest of the exercises, so
you may want to copy it several times.

We now want to draw the seismic
reflection raypath. This would be easy
if the reflector was flat but is a little
trickier in the case of a dipping event.
To create the raypath, we will use the
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Figure 1. The basic geometry for the imaging exercise. This can be used as
a template for the other exercises.

Figure 2. Construction of the true reflection travel path from S to P to R.
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image point technique. First, extend a
line from the source S to the reflector
at right angles to the reflector (simply
reverse the initial dip, moving 1
square to the left and 2 squares down).
This line should intersect the reflector
at 4 squares below a point that is 2
squares to the left of the source. Then,
extend the line the same distance on
the other side of the reflector. This
gives us the source image, which you
can label S'.

Next, connect S' to the receiver R.
This line will intersect the reflector at
a point 6 units below a point on the
surface that is 2 units to the right of S.
This is the reflecting point, which you
can label P. Connect S to P to get the
downgoing part of the raypath. The
upgoing raypath is from P to R. Final-
ly, draw the raypath from reflecting
point P to the surface, at right angles
to the reflector. Label the point on the
surface N, which is the normal to the
reflecting point. All this is shown in
Figure 2. 

Notice that the total raypath
length is given by the distance from S'
to R, which you can see is equivalent
to the combined lengths of SP and PR.
By extending the points S' and P ver-
tically to the surface, you can find the
lengths of S'R, SP and PR, and thus
prove that they are equivalent using
the Pythagorean theorem. That is:

The square roots are not only
unavoidable, but they also are crucial
to this problem, and it is important to
remember them even when convert-
ing to an approximate value for the
graph. The other raypath of interest is
PN, the normal ray from the reflector.
Notice that it intersects the surface at
a point halfway between S and M (this
is simply because of the dip angle and
is not normally the case) and has a
length of 

NMO: The simplest imaging
assumption. Now, let us assume that
we don't know the subsurface geom-
etry of the dipping bed we have just
drawn (which, of course, is the nor-

mal situation), but we know that the
reflection traveltime is . The tra-
ditional NMO assumption is that the
reflecting point is below the midpoint
at a time given by the NMO equation:

tr
2 = tn

2 + X2/V2 (2)

where tr = 2L/V = total reflection time;
tn = 2d/V = NMO time; X = offset 
(= 20 units); and V = velocity.

The geometric interpretation of
the NMO equation in a constant
velocity earth is that the total raypath
can be broken into two rays of equal
length, L, and that there is a flat-lying

reflector at a depth d below the sur-
face. The velocity term (as well as the
2s) can be removed by multiplying
through by (V/2)2 which allows us to
rewrite the NMO equation as:

L2 = d2 + h2 (3)

where h = X/2 = half-offset = 10 units;
L = length of each raypath = 

units; and d = appar-

ent depth to reflector.
Since we know the lengths of h

and L, note that by rearranging the
above equation, we can solve for the
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Figure 3. Comparison of the true reflection travel path with the zero dip
NMO assumption, with the lengths from equation (3) annotated.

Figure 4. The full prestack time migration ellipse. Note that P, P' and P”
are all valid points on the ellipse.

′ = + = = ≈S R 24 8 640 8 10 25 32 2 .

= + = = ≈SP 2 6 40 2 10 6 32 2 .

= + = = ≈PR 18 6 360 6 10 192 2

= + = ≈PN 3 6 45 6 72 2 .

= 4 108 10 /2
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apparent depth to this mythical zero
dipping reflector:

Use the approximate value of 7.75
to place the apparent reflector verti-
cally below the midpoint, but keep in
mind that the true value is . Label
the reflector as P'. This is shown in
Figure 3, along with the definitions of
X, L, h, and d. 

The prestack time ellipse. We have
now identified two points that could
be the reflector, one using the true
dipping geometry, and the other
using the NMO assumption of zero
dip. Actually, there are an infinite
number of possible reflectors between

dips of 0˚ and 90˚. An obvious third
point is symmetric with the true
reflection point on the other side of
the midpoint. (That is, for a dip from
the right to the left of 26.6˚). Finally,
although a vertical reflector (dip =
90˚) is geologically implausible, it will
help us complete the picture. Such
vertical reflectors would be at a dis-
tance of (approximately 12.65
units) from the midpoint in both
directions. To visualize this, notice
that a horizontal travel path would
cover the distance from the source to
the reflector on the left side of the
source (or the right side of the receiv-
er) twice, but the distance between
the source and receiver only once.
Label these points on your figure as
P”. We have now defined five poten-
tial reflecting points, all with a travel

path equal to 2L. These points all fall
on an ellipse, given by the equation:

where: L2 = d2 + h2 (from equation 3).
Equation (4) is referred to as the

prestack time migration ellipse, and
connects all the possible reflectors
with dips between 0˚ and 90˚ from
which our reflection could have been
generated. To kinematically time
migrate our data, we simply apply
the following sequence of steps (there
are also amplitude terms which are
not discussed here):

NMO correction → spread over
prestack ellipse → stack

The geometrical interpretation of
the migration ellipse is that the
halfwidth-width of the horizontal axis
is L, and the half-width of the vertical
axis is d (of course, half of the full ellipse
is above the surface). You can sketch the
full ellipse on your figure using the five
points we have defined, and comput-
ing the rest of the X and Z coordinates
from the following rearrangement of
the ellipse equation (4):

where d = , and L = .
Note that you must redefine the

origin to be at the midpoint, with neg-
ative distance to the left and positive
distance to the right. Your completed
figure should look like Figure 4.  Table
1 shows the computed values.

Poststack migration. The traditional
poststack migration approach can be
written as:

NMO correction → stack → zero-off-
set migration.

In zero-offset migration, we can
still use equation (4), but with an off-
set of 0. Thus, the ellipse simplifies to
a circle of radius d. That is:

X2 + Z2 = d2 (6)

Equation (6) can be thought of as
zero-offset migration in a constant
velocity earth. This circle can be
sketched very easily on the figure we
have been creating, and the result is
shown in Figure 5. The computed
values are shown in Table 2. The
migration operator is simply a circle

4 1060

4 1060

Figure 5. Poststack migration applied to the NMO corrected point P'. Note
that the true reflection point P is never imaged.

Figure 6. The full DMO ellipse. Notice that the true reflecting point is still
not imaged. However, note that NP = and, from Table 3, NQ is also
equal to /45.
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of radius . Notice, however, that
this circle does not correctly image
the reflector at any point. Thus,
NMO followed by stack and post-
stack migration is not correct for a dip-
ping reflector. 

We have now looked at two
approaches for imaging a reflector,
NMO followed by full prestack time
migration, which is correct for a dip-
ping reflector and NMO followed by
poststack time migration, which is
incorrect for a dipping reflector.
However, there is an intermediate
step that we can insert between
NMO and poststack migration to
make it behave as prestack migra-
tion, and this step is called DMO, or
dip moveout.

DMO: Partial prestack time migra-
tion. Although the derivation of the
DMO operator is quite difficult, its
interpretation is straightforward.
Here it is in words:

The DMO operator is an ellipse pass-
ing through the NMO corrected value
and the source and receiver coordinates.

Keeping in mind how we inter-
preted the full prestack ellipse, this
leads to the following equation for
the DMO ellipse:

In other words, we have simply
changed the half-width of the ellipse
on the horizontal axis from L to h but
have kept the vertical half-width at d.
To find the rest of the values of X and
Z for this ellipse, equation (7) can be
rewritten as:

60

Figure 7. The poststack migration circle. Notice that point Q moves to
point P.

Figure 8. A final summary, showing the prestack ellipse, the DMO ellipse,
and the poststack migration circle. Notice that P' moves to Q, and finally
to P.

Table 3. X-Z pairs for the DMO 
ellipse

X Z

�10.00 0.00
�19.00 3.38
�18.00 4.65
�17.00 5.53
�16.00 6.20
�15.00 6.71=
�14.00 7.10
�13.00 7.39
�12.00 7.59
�11.00 7.71
�10.00 7.75=

Table 2. X-Z pairs for the post-
migration circle

X Z

�7.75 = 0.00
�7.00 3.32
�6.00 4.90
�5.00 5.92
�4.00 6.63
�3.00 7.14
�2.00 7.48
�1.00 7.68
�0.00 7.75 = 60

60

Table 1. X-Z pairs for the full
prestack migration ellipse

X Z

�12.65 = 0.00
�12.00 2.45
�11.00 3.82
�10.00 4.74
�19.00 5.44
�18.00 6.00
�17.00 6.45
�16.00 6.82
�15.00 7.12
�14.00 7.35
�13.00 7.52
�12.00 7.65
�11.00 7.72
�10.00 7.75=
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where d = &i and h = 10. 
Sketch the DM0 ellipse on your 

graph paper and see how it relates to 
the other two curves. To help you, the 
DM0 ellipse values are computed in 
Table 3, and the final ellipse is shown 
in Figure 6. 

Let us focus on a single surface 
point, the one at N, which has an X- 
coordinate of -5. Remember, this is the 
normal projection of the raypath from 
the reflecting point P. This depth is easy 
to calculate from equation (8), giving: 

Recall that this was the length of 
normal raypath from the reflector! 
Plot this point below the N and label 
it Q. Can you see what is coming next? 

Poststack migration after DMO. You 
will have noticed that the DM0 
ellipse still has not correctly reposi- 
tioned our reflector. This is because 

we have not completed the sequence. 
For the final step, we will perform 
poststack migration. That is, draw a 
circle of radius a using point N as 
the center. Notice that this curve inter- 
sects the dipping reflector at the prop- 
er position! In other words, poststack 
migration will move points on the 
DM0 ellipse to their correct reflec- 
tion position (in our case, point Q has 
moved to point P). The values are 
shown in Table 4. The migration is 
shown in Figure 7. 

Thus, we have shown graphical- 
ly that DM0 is indeed prestack par- 

Table 4. X-Z pairs for 
post-DM0 migration 

tial migration, and that full prestack 
time migration can be achieved by : 

NMO + DM0 + stack + migration. 

A final summary of the three 
curves - the full ellipse, the DM0 
ellipse, and the poststack migration 
circle - is shown in Figure 8. 

Conclusion. In this simple graphical 
exercise, we have tied together three 
very important imaging concepts: 
NMO, DMO, and prestack time mi- 
gration. The reason it all worked so 
well is that we assumed a constant 
velocity earth and a single dipping 
reflector. As the earth gets more struc- 
turally complex, these assumptions 
break down and we must introduce 
more advanced prestack time and 
depth migration concepts (see article 
by Ross in this issue). However, once 
the concepts of this exercise have been 
fully understood, you will have an 
easier time understanding these more 
complex ideas. IE 
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